Comparison of novelty detection methods for multispectral images in rover-based planetary exploration missions

Recommended citation: Kerner, H. R., Hardgrove, C. J., Czarnecki, S., Gabriel, T. S. J., Mitrofanov, I. G., Litvak, M. L., Sanin, A. B., Lisov, D. I. (2019). "Analysis of active neutron measurements from the Mars Science Laboratory Dynamic Albedo of Neutrons instrument: Intrinsic variability, outliers, and implications for future investigations." Under Review.

Science teams for rover-based planetary exploration missions like the Mars Science Laboratory Curiosity rover have limited time for analyzing new data before making decisions about follow-up observations. There is a need for systems that can rapidly and intelligently extract information from planetary instrument datasets and focus attention on the most promising or novel observations. Several novelty detection methods have been explored in prior work for three-channel color images and non-image datasets, but few have considered multispectral or hyperspectral image datasets of for the purpose of scientific discovery. We compared the performance of four novelty detection methods–Reed Xiaoli (RX) detectors, principal component analysis (PCA), autoencoders, and generative adversarial networks (GANs)–and the ability of each method to provide explanatory visualizations to help scientists understand and trust predictions made by the system. We show that pixel-wise RX and autoencoders trained with structural similarity (SSIM) loss can detect morphological novelties that are not detected by PCA, GANs, and mean squared error (MSE) autoencoders, but that these methods are better suited for detecting spectral novelties–i.e., the best method for a given setting depends on the type of novelties that are sought. Additionally, we find that autoencoders provide the most useful explanatory visualizations for enabling users to understand and trust model detections, but that existing GAN approaches to novelty detection may be limited in this respect.

Recommended citation: Kerner, H. R., Wagstaff, K. L., Bue, B. D., Wellington, D. F., Jacob, S., Bell III, J. F., Kwan, C., Ben Amor, H. (2019). "Comparison of novelty detection methods for multispectral images in rover-based planetary exploration missions." Under Review.