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Abstract

In this work, we present a system based on convolutional au-
toencoders for detecting novel features in multispectral im-
ages. We introduce SAMMIE: Selections based on Autoen-
coder Modeling of Multispectral Image Expectations. Pre-
vious work using autoencoders employed the scalar recon-
struction error to classify new images as novel or typical. We
show that a spatial-spectral error map can enable both accu-
rate classification of novelty in multispectral images as well
as human-comprehensible explanations of the detection. We
apply our methodology to the detection of novel geologic fea-
tures in multispectral images of the Martian surface collected
by the Mastcam imaging system on the Mars Science Labo-
ratory Curiosity rover.

Introduction
The goal of novelty detection techniques is to identify
new patterns in data that have not previously been ob-
served (Markou and Singh 2003a; 2003b). Prior work has
shown promising results in using autoencoder (Hinton and
Salakhutdinov 2006) networks to detect novel observa-
tions and sensor readings. Autoencoders create mappings
from high-dimensional input data, e.g., images, to a lower-
dimensional manifold, along with a corresponding reverse
mapping. Autoencoders thereby identify a compact repre-
sentation that consists of the most salient features of the
dataset.

An autoencoder can be trained in a purely unsupervised
fashion to recognize novel input data that substantially de-
viate from previously seen data. The network is trained to
reconstruct all training inputs with minimal loss. A new in-
put sample can be fed into the trained network to yield a new
reconstruction. The scalar reconstruction error can be used
as a measure of the (un)familiarity of the autoencoder with
this input. The assumption is that high reconstruction errors
indicate novel, previously unseen input data. Such unsuper-
vised training is particularly useful in applications like plan-
etary exploration where the nature of novel features may not
be well defined or known at all. Additionally, the cost of ac-
quiring human labels for scientific data can be high due to
limited access to domain experts.
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One project that may greatly benefit from novelty detec-
tion is the Mars Science Laboratory Curiosity rover. Cu-
riosity explores new regions on Mars every day as it is
commanded to drive and make scientific observations in
Gale crater. One instrument the rover uses to make geologic
observations is the mast camera, or “Mastcam,” a pair of
multispectral, color CCD imagers mounted on the rover’s
mast about 2 meters above the surface (Bell et al. 2017;
Malin et al. 2017; Grotzinger et al. 2012). Scientists only
have a short time period after the data is received from
the rover for planning follow-up observations (typically less
than 12 hours), and this planning timeline will be even fur-
ther reduced for future missions (for example, the goal is
≤5 hours for NASA’s Mars 2020 rover mission). For these
reasons, there is a need for systems that can rapidly and in-
telligently extract information of interest from Mastcam and
other science instrument data to focus on potential discov-
eries and avoid missed opportunities. Science planning and
data analysis teams can benefit by spending their limited
available time on the most promising, novel, or anomalous
observations (e.g., Figure 1). Such a system must also pro-
vide explanatory visualizations that allow scientists to trust
and understand how the system came to its conclusion – a
need that is not supported by existing methods.
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Figure 1: Example Mastcam images with typical (top) and
novel (bottom) geologic features on Mars. Image credit:
NASA/JPL/MSSS/ASU

In this work, we propose a neural network architec-
ture called Selections based on Autoencoder Modeling of
Multispectral Image Expectations (SAMMIE) for detecting
and explaining novel features in multispectral images. We
show how SAMMIE can identify novel geologic features in



Mastcam multispectral images of the Martian surface to fa-
cilitate scientific discovery and mission science planning.
We provide a key insight that scalar reconstruction error
does not always reliably indicate the novelty in this domain.
As a solution, we argue and demonstrate that an autoencoder
error map that captures spatial and spectral variation in er-
rors yields a more suitable representation for estimating nov-
elty in complex, high-dimensional data such as multispectral
images. This method also enables human-comprehensible
explanations and visualizations of detections.

Related Work
Novelty detection approaches. Most approaches to nov-
elty detection focus on data from sensors or 3-channel color
(RGB) images. Approaches for novelty detection in images
typically detect anomalies in individual pixel spectra rather
than spatial features within a multi-band image, (Kwon and
Nasrabadi 2005; Bati et al. 2015). Traditional novelty de-
tection includes statistical approaches such as density esti-
mation, box-plots, and thresholds on distance from a class
mean (Markou and Singh 2003a; Farrand, Merenyi, and Par-
ente 2018), and neural network based approaches such as
estimating output probability density functions, estimating
prediction uncertainty, and thresholds on individual neuron
activities (Markou and Singh 2003b).

Leveraging the success of deep neural networks at learn-
ing complex relationships in data, recent approaches use
autoencoder networks for estimating novelty. In these ap-
proaches, an autoencoder is trained to minimize the re-
construction error for non-novel (typical) examples, typ-
ically the mean squared error between the input image
and the image reconstructed by the autoencoder. Existing
autoencoder-based approaches determine whether a new in-
put is novel using a threshold or standard deviation metric
on the scalar reconstruction error (Richter and Roy 2017;
Japkowicz, Myers, and Gluck 1995; Xiong and Zuo 2016).
While this has been sufficient for relatively simple datasets,
it is not sufficient for all datasets as we show in this work.

Other deep learning approaches to novelty detection aim
to quantify the novelty of inputs as a measure of confidence
in the network’s output (Vasconcelos, Fairhurst, and Bisset
1995; Bishop 1994; Singh and Markou 2004; Chen et al.
2017). These are related to approaches for estimating the
uncertainty of neural networks, for which methods based
on Bayesian neural networks, ensembles of networks, and
dropout have been proposed (Gal and Ghahramani 2016;
Gal 2017; Mackay 1995; Lakshminarayanan, Pritzel, and
Blundell 2017). Unsupervised novelty detection methods
that learn representations for typical or non-novel datasets
are also closely related to approaches to segmentation and
objectness, where the model objective is to discover latent
classes or features that are common in the data (Alexe,
Deselaers, and Ferrari 2012; Badrinarayanan, Kendall, and
Cipolla 2017).

Novelty detection in planetary exploration. Novelty de-
tection for planetary science and astronomy datasets often
employs Principal Component Analysis (PCA), a technique

used to identify patterns and outliers in data (Clegg et al.
2009; Dutta et al. 2007; Wagstaff et al. 2013). A limitation
of linear methods such as PCA is that they can only repre-
sent simple (linear) relationships in the data. Linear meth-
ods can also be sensitive to potentially irrelevant variations
in the data such as changes in position, orientation, and il-
lumination of an object. For image applications, these meth-
ods also require transformation of the raw data (e.g., pixel
values) into feature representations suitable for the learning
algorithm (Wagstaff and Lee 2018).

Dataset
The Mastcam color imaging system on the Mars Science
Laboratory (MSL) Curiosity rover acquires images for a va-
riety of geologic and atmospheric studies (Bell et al. 2017).
Each of Mastcam’s cameras, or “eyes,” has an eight-position
filter wheel enabling image observations to be collected with
“true color” (Bayer pattern broadband red, green, and blue)
and with six narrow-band spectral filters spanning ∼400-
1100 nm (visible and near-infrared) (Bell et al. 2017). The
imagers have different focal lengths: 34 mm for the left eye
and 100 mm for the right eye.

Our approach to novelty detection requires two datasets:
one that represents the typical geology of Mars and one
that contains expert-identified novel examples. To construct
these datasets, we considered all Mastcam images acquired
from sols (Martian days since landing) 3 to 1666 using all
six narrow-band spectral filters by the left (M-34) and right
(M-100) cameras. We use uncalibrated thumbnail versions
of full-resolution multispectral images since these are the
first products sent from the rover to Earth and thus are the
earliest available tactical products. These images constitute
a source dataset of 739 six-band images.

We identified novel examples in this dataset based on se-
lections by an expert multispectral analyst on the Mastcam
science team (Wellington et al. 2017a). We created a GUI
for experts to draw 64 × 64-pixel bounding boxes around
areas of interest in the source dataset of 739 images (e.g.,
Figure 2). The multispectral image areas corresponding to
these bounding boxes make up a dataset of 332 64× 64× 6-
pixel “novel” images. These images were excluded from
the training set and later used for evaluation. After remov-
ing expert-selected novel images from the source dataset,
we created a dataset of “typical” images by randomly crop-
ping 64 × 64-pixel frames from the source images for a
total training dataset of 98,800 64 × 64 × 6-pixel images.
The source images are publicly available through the NASA
Planetary Data System (PDS) and the labeled data is avail-
able at 10.5281/zenodo.1486196.

Methodology
We introduce a new methodology for detecting novel fea-
tures in multispectral images as well as explaining why they
were detected. The Selections based on Autoencoder Mod-
eling of Multispectral Image Expectations (SAMMIE) sys-
tem has three parts: a convolutional autoencoder for mod-
eling the latent representations for typical data, a convolu-
tional neural network classifier that classifies new examples
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Figure 2: Example images selected by Mastcam multispec-
tral experts for the novel image dataset. From top left
to bottom right: an outcrop that may contain the min-
eral jarosite (Wellington et al. 2017b), a drill hole and
tailings, the iron meteorite called “Lebanon” (Johnson et
al. 2014), and a broken and wheel-scuffed surface. Image
credit: NASA/JPL/MSSS/ASU

as containing novel content or not based on the autoencoder
error map, and visualization tools for explaining the detec-
tion in a human-comprehensible way (see Figure 3).

Convolutional autoencoder to represent image content.
We use a convolutional autoencoder (CAE) architecture with
three convolutional layers in the encoder and three trans-
posed convolutional layers in the decoder. The layer archi-
tectures are 7×7×12, 5×5×8, and 3×3×3 respectively for
the encoder (reverse for the decoder). Since the input layer
dimension is 64×64×6 and the dimension of the bottleneck
layer is 16 × 16 × 3, examples are compressed by a factor
of 32 before being reconstructed by the decoder. The loss
function used for training is the mean squared error across
all pixels and bands:

E(X, X̂) =
1

NMK

K∑
k=1

M∑
j=1

N∑
i=1

(xkij − x̂kij)2 (1)

where xkij and x̂kij are the pixel intensities at row i, col-
umn j, and band k in the input and reconstructed images
respectively, N and M are the spatial dimensions of each
image, and K is the number of bands. From the input and
reconstructed images, we can construct a spatial-spectral er-
ror map δ(X, X̂), a 64 × 64 × 6 tensor containing elements
(xkij−x̂kij)2 for i = 1, ..., N , j = 1, ...,M , and k = 1, ...,K.

Convolutional neural network for novelty detection.
The CAE error map identifies novel features at the pixel
level but does not estimate the novelty of the image as a
whole. Previous approaches used a threshold on the scalar
reconstruction error (Eqn. 1) to detect novelty. In our dataset,
the scale of novel features is highly variable, and typical and
novel error values are not linearly separable (Figure 4). We
therefore use a convolutional neural network (CNN) to pre-
dict whether the CAE error map represents truly novel fea-
tures or not. The CNN is a binary classifier with two convo-
lutional layers with sizes 5×5×32 and 5×5×64, followed
by one dense layer with 512 units, a dropout layer, and a
weighted softmax layer.

Explanations to visualize novel content. Comparing the
input image with the image reconstructed by the autoen-
coder reveals which features were considered novel by ob-
serving what was “lost” in the reconstruction (Figure 3). The
explanation component of SAMMIE builds on this intuition
by using the CAE error map to highlight the novel content
in an image for the end user. This enables a richer explana-
tion of the detection through pixel-wise comparisons of the
observed spectrum (reflectance in one pixel location across
all six bands) to the spectrum SAMMIE expected to find in
highlighted novel regions. We explore explanations in more
detail in the Explanations section.

Experiments
We trained the convolutional autoencoder (CAE) component
of SAMMIE on the typical images, then used the resulting
error output from the CAE to train five different novelty clas-
sifiers. We compare these results with direct classification of
the multispectral input image to assess the contribution of
the autoencoder step.

Classification of Autoencoder Error Output
We compared the novelty detection performance of SAM-
MIE using the same convolutional autoencoder combined
with different novelty classifiers: Naive Bayes, a feed-
forward neural network (FFNN), a CNN, and Inception-V3
pre-trained on the ImageNet database (Szegedy et al. 2015;
Deng et al. 2009). We trained the CNN and Inception-V3
classifiers using CAE error maps for 98,700 typical (neg-
ative) examples and 300 positive examples from the novel
dataset described in the Dataset section. We trained the
Naive Bayes and FFNN classifiers using only the mean of
each CAE error map for the same examples. To correct
for the extreme class imbalance, we assigned a weight to
positive examples that is inversely proportional to the posi-
tive class occurrence for all experiments except those using
Inception-V3: wi = 1 + ci(

98,700
300 − 1) for example i hav-

ing class ci ∈ {0, 1}. We used a fixed test set of 132 (100
negative and 32 positive) randomly selected examples for all
experiments. We describe each experiment below and com-
pare their performance in Table 1. Figure 5 compares the
receiver operating characteristics (ROC) and area under the
curve (AUC) computed from the ROC for each classifier.
The accuracies reported in Table 1 were computed using the
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Figure 3: SAMMIE system comprising a convolutional autoencoder with matrix-typed reconstruction error, a convolutional
neural network for classification, and products for explaining detections. Image credit: NASA/JPL/MSSS/ASU

threshold on posterior probability from the ROC curve that
maximized classification accuracy on the test set.

Naive Bayes. Previous work (Richter and Roy 2017; Jap-
kowicz, Myers, and Gluck 1995; Xiong and Zuo 2016) has
shown that a threshold on the autoencoder scalar reconstruc-
tion error (the mean squared error between the reconstructed
and input examples) is sufficient for discriminating between
typical and novel inputs. We trained a Naive Bayes classifier
to predict novelty using the scalar error value (Figure 4). It is
clear from Figure 4 that there is significant overlap between
the distributions of mean squared error in the typical image
and novel image datasets. Maximum accuracy of 78.0% was
achieved with the posterior threshold 0.415.

Feed-forward neural network. As an alternative to the
Naive Bayes classifier, we trained a feed-forward neural net-
work classifier to predict whether an example was typical or
novel based on the scalar reconstruction error. The classifier
consisted of three dense layers of size 5−10−5. Maximum
accuracy of 78.0% was achieved with the threshold 0.627.

Inception V3 network. Since the Inception network re-
quires 3-channel images as input, we created two separate
input datasets for the shorter wavelength Mastcam filters
(447, 527, and 805 nm for the M-100; 445, 527, and 676
nm for the M-34) and the longer wavelength filters (908,
937, and 1013 nm for the M-100; 751, 867, 1012 nm for the
M-34). We refer to these networks in Table 1 as Inception-
V3 (short) and Inception-V3 (long). We fine-tuned the final
layer of Inception-V3 using TensorFlow (Abadi et al. 2015).
We found that this model achieved better performance when
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Figure 4: Histogram of autoencoder reconstruction error
(mean squared error) for typical and novel images showing
significant overlap between the two distributions.

examples were not weighted during training to correct for
the class imbalance as in the other classifiers. Maximum ac-
curacy of 84.8% was achieved with the threshold 0.217 for
Inception-V3 (short) and 79.5% with the threshold 0.594 for
Inception-V3 (long).

SAMMIE. SAMMIE uses a convolutional neural network
to classify the CAE error map as described in the Dataset
section. The input to the CNN was the 64 × 64 × 6 error
map. Maximum accuracy of 96.2% was achieved with the



Figure 5: Receiver operating characteristics (ROC) curves
for five compared classifiers of autoencoder error output.

threshold 0.802.

Direct Classification

In a second experiment (Table 2), we tested the ability of
three models to classify the novelty of the multispectral in-
put image directly, rather than passing the input first through
the CAE. As in the previous experiment, we fine-tuned sep-
arate Inception-V3 models using shorter and longer wave-
length Mastcam filters. We used the classification threshold
that yielded the highest accuracy as in the previous experi-
ment. We found that the Inception networks performed bet-
ter when classifying the original input directly than when
using the autoencoder as a pre-processor. This is likely be-
cause the features represented in the original input are more
similar to the natural images the Inception network was
trained on compared to the images of reconstruction error
that the autoencoder produces. Although the performance of
the Inception-V3 (short) model comes close to SAMMIE,
it does not provide a means for visualizing intuitive expla-
nations and would not be expected to perform well given
features not represented in the training set.

Qualitative results

Figure 6 shows images from the test set that were classi-
fied as typical or as novel with at least 99.9% probability.
All were correctly classified. More than half of the typical
example images contain rover hardware, such as the calibra-
tion target (dark vertical pole with sphere on top). This target
is imaged very frequently and thus is easily recognized by
SAMMIE. Other images in the typical set do not appear to
contain significant spectral diversity compared with the im-
ages in the novel set. Of the images in the novel set, two con-
tain meteorites, and several include marks left by the rover
brushing or drilling the surface.

Typical
top 0.1%

Novel
top 0.1%

Figure 6: Test set images classified as typical or novel with
probability ≥ 99.9%. Image credit: NASA/JPL/MSSS/ASU
(images are stretched to emphasize spectral diversity).

Explanations
When analyzing multispectral images, scientists typically
use a spectral analysis tool to inspect the spectrum in a re-
gion of interest within the image (single or groups of pix-
els). They compare the observed spectra to known spectral
patterns and characteristics for different materials to come
up with interpretations for the observed data (Wellington et
al. 2017a).

From the error map produced by SAMMIE, we can visu-
alize for any pixel in the image the detected novel content
alongside the observed 6-filter pixel spectrum and the spec-
trum that SAMMIE reconstructed (Figure 7). In the image
of an iron meteorite in Figure 7 (top), SAMMIE identified
the meteorite in the image (region 1) as novel. The expla-
nation shows that the rock has a higher signal in filter 6
(1013 nm) than expected, which is consistent with the in-
crease in near-infrared reflectance values between the wave-
lengths of filter 5 (937 nm) and 6 that is typical of iron me-
teorites, relative to native Martian materials (Gaffey 1976;
Wellington et al. 2017a). In contrast, in a region of the im-
age that SAMMIE identified as typical (region 2), the expla-
nation shows that the spectrum SAMMIE expected matches
well with the actual spectrum in that region. The bottom im-
age of Figure 7 shows a raised ridge that was crushed by the
rover’s wheel. Comparing the spectra in Figure 7 (bottom)
shows that the region 1 signal in the near-infrared wave-
lengths starting around 750 nm is much lower relative to
filter 2 (527 nm), creating a downturn between the signal in
the near-infrared filters that is consistent with the decrease
in near-infrared reflectance values observed for magnesium-
rich ridges by other instruments on MSL (Johnson et al.
2015; Leveille et al. 2014).

Conclusions and Future Work
We presented a system based on convolutional autoencoders
for novelty detection in multispectral images. Our system,
Selections based on Autoencoder Modeling of Multispec-



Model Accuracy True Pos. False Pos. True Neg. False Neg. AUC
Naive Bayes 78.0% 9 6 94 23 0.62

FFNN 78.0% 9 6 94 23 0.73
Inception-V3 (long) 79.5% 8 3 97 24 0.79
Inception-V3 (short) 84.8% 28 16 84 4 0.90

SAMMIE 96.2% 28 1 99 4 0.98

Table 1: Test set performance for image novelty classification based on CAE error output.

Model Accuracy True Pos. False Pos. True Neg. False Neg. AUC
CNN 82.6% 13 4 96 19 0.87

Inception-V3 (long) 87.1% 16 1 99 16 0.91
Inception-V3 (short) 90.1% 21 2 98 11 0.95

Table 2: Test set performance for direct novelty prediction from multispectral input images.

1 1

2 2

1 1

2 2

Figure 7: Example explanations for two images identified by SAMMIE as novel. Areas highlighted in red have the largest
reconstruction error (novelty). Top row: an iron meteorite. Bottom row: a raised, fracture-filling ridge crushed by the rover’s
wheel. Comparing the actual and expected pixel values in each band helps multispectral image analysts determine why the
indicated feature might be novel. Image credit: NASA/JPL/MSSS/ASU (sol 346, sequence mcam01405; sol 164, mcam00883).

tral Image Expectations (SAMMIE), uses autoencoder error
maps to make classifications of images as novel or typical
with respect to the training set. This enables our system to
be sensitive to subtle novel features within an image as well
as robust to potentially false indicators of spectral novelty,
such as overexposure or saturation. In addition, our model
enables human-comprehensible explanations of detections.
We showed how this novelty detection method could be ap-
plied to multispectral images from the Mars Science Labo-
ratory Curiosity Mastcam instrument investigation.

In future work, we will continue developing the expla-
nation capability of SAMMIE and conduct experiments to
measure the benefits of using SAMMIE in practice for MSL
science operations. We will explore the ability of autoen-
coder representations to transfer between similar instru-

ments and images of similar scenes, such as between Mast-
cam and the Pancam imaging system on the Mars Explo-
ration Rovers Spirit and Opportunity (Bell III et al. 2008).
Additionally, we plan to explore the use of autoencoders
for change detection and the novelty detection capability
of other generative models including Generative Adversarial
Networks (GANs) (Goodfellow et al. 2014).

Acknowledgments
This work was funded by NASA STTR #80NSSC17C0035
and NASA/JPL funding from the Mars Science Labora-
tory Mastcam instrument investigation. It was carried out in
part at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.



References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Leven-
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M.; Gómez-Elvira, J.; Hassler, D. M.; Jandura, L.; Litvak,
M.; Mahaffy, P.; Maki, J.; Meyer, M.; Malin, M. C.; Mitro-
fanov, I.; Simmonds, J. J.; Vaniman, D.; Welch, R. V.; and
Wiens, R. C. 2012. Mars Science Laboratory Mission and
Science Investigation. Space Science Reviews 170(1-4):5–
56.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing
the Dimensionality of Data with Neural Networks. Science
313(5786):504–507.
Japkowicz, N.; Myers, C.; and Gluck, M. 1995. A Nov-
elty Detection Approach to Classification. In Proceedings
of the 14th International Joint Conference on Artificial In-
telligence (IJCAI), volume 1, 518–523.
Johnson, J. R.; Bell, J. F., I.; Gasnault, O.; Le Mouelic, S.;
Rapin, W.; Bridges, J.; and Wellington, D. F. 2014. First
Iron Meteorites Observed By the Mars Science Laboratory
(MSL) Rover Curiosity. In Proceedings of the American
Geophysical Union Fall Meeting.
Johnson, J. R.; Bell III, J.; Bender, S.; Blaney, D.; Cloutis,
E.; DeFlores, L.; Ehlmann, B.; Gasnault, O.; Gondet, B.;
Kinch, K.; Lemmon, M.; Le Mouelic, S.; Maurice, S.; Rice,
M.; and Wiens, R. 2015. ChemCam Passive Reflectance
Spectroscopy of Surface Materials at the Curiosity Landing
Site, Mars. Icarus 249:74–92.
Kwon, H., and Nasrabadi, N. 2005. Kernel RX-algorithm:
a Nonlinear Anomaly Detector for Hyperspectral Imagery.
IEEE Transactions on Geoscience and Remote Sensing
43(2):388–397.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and Scalable Predictive Uncertainty Estimation us-
ing Deep Ensembles. In Advances in Neural Information
Processing Systems (NIPS) 30.
Leveille, R. J.; Bridges, J.; Wiens, R. C.; Mangold, N.;
Cousin, A.; Lanza, N.; Forni, O.; Ollila, A.; Grotzinger,



J.; Clegg, S.; Siebach, K.; Berger, G.; Clark, B.; Fabre,
C.; Anderson, R.; Gasnault, O.; Blaney, D.; Deflores, L.;
Leshin, L.; Maurice, S.; and Newsom, H. 2014. Chem-
istry of Fracture-filling Raised Ridges in Yellowknife Bay,
Gale Crater: Window into Past Aqueous Activity and Habit-
ability on Mars. Journal of Geophysical Research: Planets
119(11):2398–2415.
Mackay, D. J. C. 1995. Probable Networks and Plausible
Predictions a Review of Practical Bayesian Methods for Su-
pervised Neural Networks. Network: Computation in Neural
Systems 6(3):469–505.
Malin, M. C.; Ravine, M. A.; Caplinger, M. A.; Tony
Ghaemi, F.; Schaffner, J. A.; Maki, J. N.; Bell, J. F.;
Cameron, J. F.; Dietrich, W. E.; Edgett, K. S.; Edwards, L. J.;
Garvin, J. B.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.;
Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.;
Parker, T. J.; Rowland, S. K.; Schieber, J.; Sletten, R.; Sulli-
van, R. J.; Sumner, D. Y.; Aileen Yingst, R.; Duston, B. M.;
McNair, S.; and Jensen, E. H. 2017. The Mars Science
Laboratory (MSL) Mast Cameras and Descent Imager: In-
vestigation and Instrument Descriptions. Earth and Space
Science 4(8):506–539.
Markou, M., and Singh, S. 2003a. Novelty Detection: a
Review - Part 2: Neural Network Based Approaches. Signal
Processing 83(12):2499–2521.
Markou, M., and Singh, S. 2003b. Novelty Detection: a
Review-Part 1: Statistical Approaches. Signal Processing
83(12):2481–2497.
Richter, C., and Roy, N. 2017. Safe Visual Navigation via
Deep Learning and Novelty Detection. In Proceedings of
Robotics Science and Systems (RSS).
Singh, S., and Markou, M. 2004. An Approach to Nov-
elty Detection Applied to the Classification of Image Re-
gions. IEEE Transactions on Knowledge and Data Engi-
neering 16(4):396–406.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going Deeper With Convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Vasconcelos, G.; Fairhurst, M.; and Bisset, D. 1995. Inves-
tigating Feedforward Neural Networks with Respect to the
Rejection of Spurious Patterns. Pattern Recognition Letters
16(2):207–212.
Wagstaff, K. L., and Lee, J. 2018. Interpretable discovery in
large image data sets. In Proc. of the Workshop on Human
Interpretability in Machine Learning (WHI), 107–113.
Wagstaff, K. L.; Lanza, N. L.; Thompson, D. R.; Dietterich,
T. G.; and Gilmore, M. S. 2013. Guiding Scientific Discov-
ery with Explanations Using DEMUD. In Twenty-Seventh
AAAI Conference on Artificial Intelligence, 905–911.
Wellington, D. F.; Bell III, J. F.; Johnson, J. R.; Rice, M. S.;
Fraeman, A. A.; and Horgan, B. 2017a. VIS/NIR Spectral
Differences of Materials within Gale Crater, Mars: Parame-
terization of MSL/Mastcam Multispectral Observations. In
Proc. of the 48th Lunar and Planetary Science Conference.

Wellington, D. F.; Bell, J. F.; Johnson, J. R.; Kinch, K. M.;
Rice, M. S.; Godber, A.; Ehlmann, B. L.; Fraeman, A. A.;
and Hardgrove, C. 2017b. Visible to Near-Infrared
MSL/Mastcam Multispectral Imaging: Initial Results from
Select High-Interest Science Targets within Gale Crater,
Mars. American Mineralogist 102(6):1202–1217.
Xiong, Y., and Zuo, R. 2016. Recognition of Geochemical
Anomalies using a Deep Autoencoder Network. Computers
and Geosciences 86:75–82.


