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A B S T R A C T

The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images that are often
JPEG compressed before being downlinked to Earth. Depending on the context of the observation, this com-
pression can result in image artifacts that might introduce problems in the scientific interpretation of the data
and might require the image to be retransmitted losslessly. We propose to streamline the tedious process of
manually analyzing images using context-dependent image quality assessment, a process wherein the context and
intent behind the image observation determine the acceptable image quality threshold. We propose a neural
network solution for estimating the probability that a Mastcam user would find the quality of a compressed
image acceptable for science analysis. We also propose an automatic labeling method that avoids the need for
domain experts to label thousands of training examples. We performed multiple experiments to evaluate the
ability of our model to assess context-dependent image quality, the efficiency a user might gain when in-
corporating our model, and the uncertainty of the model given different types of input images. We compare our
approach to the state of the art in no-reference image quality assessment. Our model correlates well with the
perceptions of scientists assessing context-dependent image quality and could result in significant time savings
when included in the current Mastcam image review process.

1. Introduction

The Mastcam color imaging system on the Mars Science Laboratory
Curiosity rover acquires images within Gale crater for a variety of
geologic and atmospheric studies (e.g., Malin et al., 2017, Bell et al.,
2017, Grotzinger et al., 2012). Images are often JPEG compressed on-
board the rover before being downlinked to Earth. While critical for
transmitting images on a low-bandwidth connection, this compression
style can result in small image artifacts most noticeable as anomalous
brightness or color changes within or near 8 8× -pixel JPEG compres-
sion block boundaries (Fig. 1). In high-frequency detail regions of some
images, for example in regions showing fine layering or lamination in
sedimentary rocks, the image must be retransmitted losslessly (i.e.,
without lossy JPEG compression) to avoid introducing difficulties in the
scientific interpretation of the data. The process of identifying which
images have been adversely affected by compression artifacts is per-

formed manually by the Mastcam science team. As of sol 1928,
Mastcam acquired 87,885 images and 18,800 (∼ 21%) of these were
retransmitted losslessly. This process requires a significant time com-
mitment from human experts and consumes critical portions of the
available downlink data volume.

In this work, we aim to facilitate the scientific image review process
using context-dependent image quality assessment. We define context-
dependent image quality assessment as a process wherein the context
and intent behind the image observation determine acceptable image
quality thresholds. We propose to automatically identify images in
which quality might be problematic for analysis using a two-part ma-
chine learning solution. Our proposed solution relies on: 1) a logistic
regression model that maps compression level and joint entropy be-
tween an uncompressed and compressed image to the image utility,
defined as the probability that a scientist would accept the quality of
the compressed image; and 2) a convolutional neural network (CNN)
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that learns to predict the image utility given only the pixel information
in the compressed image. Our solution can characterize the perceived
quality of an entire image or small image patches. To evaluate this
methodology, we perform an experiment to assess the time and effort
expended by a Mastcam scientist when identifying images to re-
transmit. We show experimentally that, when assisted by our proposed
method, a Mastcam investigator could significantly reduce the time
required to review images. We also present a user study that surveys
Mastcam data users to measure the correlation between assessments by
our model and perceptions of context-dependent image quality by sci-
entists.

This paper is organized as follows: Section 2 details previous work
related to context-dependent image quality assessment. In Section 3 we
describe our source dataset. In Section 4 we present our method for
automatically labeling examples for training. In Section 5 we present
our CNN model for assessing context-dependent image quality. Section
6 details the experiments and results for evaluating our proposed

method and Section 7 discusses the contribution of these results. Fi-
nally, Section 8 summarizes our conclusions and proposes directions for
future work.

2. Related work

2.1. No-reference image quality assessment

Previous works have proposed methods for no-reference image
quality assessment (NR-IQA), also called blind image quality assess-
ment, which quantifies and predicts the perceived quality of a distorted
(e.g., JPEG-compressed) image without access to a reference image (e.g.,
the uncompressed image). However, existing approaches rely on one or
all of the following: (1) off-the-shelf or hand-crafted features, (2) a
definition of image quality that is independent of the subject in the
image, or (3) benchmark datasets, such as the LIVE Image Quality
Assessment Database (Sheikh et al.), for demonstrating performance.
These aspects inhibit their use in real-world problems where the context
of the image and the level of distortion are important for quality as-
sessment.

Most NR-IQA approaches manually design and extract features that
are discriminant for quality degradations resulting from compression or
other distortions. Successful approaches such as BRISQUE (Mittal et al.,
2012), DIIVINE (Moorthy and Bovik, 2011), BLIINDS-II (Saad et al.,
2012), Ghadiyaram et al. (2014), and Hou et al. (2015) commonly
employ Natural Scene Statistics (NSS) for discriminative features to
estimate quality as a measure of naturalness. Other successful ap-
proaches (Wang et al., 2002; Li et al., 2011; Chetouani et al., 2015) use
hand-crafted features based on statistical properties computed from the
image.

Recent approaches for NR-IQA have demonstrated state-of-the-art
results using automatically learned features for estimating image
quality. Ye et al. (2012) proposed an unsupervised feature learning
technique based on codebook representations. Other recent work de-
monstrated the automatic feature learning capability of neural net-
works. Tang et al. (2014) used a three-layer deep belief network to
learn higher-level representations from pixels used as features in
Gaussian Process regression to predict image quality scores. Bianco
et al. (2017) used a pre-trained CNN to automatically extract features
describing generic image distortions for a support vector regressor
predicting image quality scores. These works use two-step processes of
1) automatic feature extraction, followed by 2) regression using ex-
tracted features to predict image quality. Kang et al. (2014) combined
these steps into a single optimization procedure where features are
extracted in a single convolutional layer and regression is performed in
two fully-connected layers of a neural network. Additionally, Kang
et al. (2014) analyzed on patches of input images to enable local image
quality assessment. Of previous works on NR-IQA, this work is most
similar to ours in that the authors propose an end-to-end CNN solution
to assess image quality of local image patches that are combined for
whole-image assessment.

The primary difference between previous work and our work is that
in previous work, the image quality assessment is independent of the
image subject. These works perform objective image quality assessment
for generic distorted images, whereas our solution predicts the context-
dependent image quality of JPEG-compressed images acquired for
geologic study. In this application of image quality analysis to scientific
images, quality is not an objective measure of feature distortion as in
other work. It is a context-specific measure that represents the like-
lihood that artifacts introduced during compression will complicate the
scientific analysis of the image. This is an important distinction because

Fig. 1. Mastcam M-34 image of finely-layered outcrop rocks acquired on
Curiosity sol 1155, sequence mcam05219. The middle inset shows a zoomed-in
view of some of the layers in the image original downlinked with JPEG com-
pression factor 85. The bottom image is an example of the same scene without
compression. (Adapted from Bell et al. (2017)).
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Fig. 2. Comparison of image characteristics
in the LIVE Image Quality Assessment
Database (Sheikh et al.) of Earth images and
our Mastcam dataset of Mars surface
images. Comparing histograms of all images
in each dataset after applying the Fast
Fourier Transformation (b) shows that the
two datasets have similar frequency dis-
tributions. However, histograms of pixel
values in red, green, and blue channels
across the datasets show very different color
distributions; the Mastcam distribution is
Gaussian and the LIVE distribution is nearly
uniform. The spikes and gaps seen in the
LIVE database histograms are a result of
blocky compression artifacts in the images.
(For interpretation of the references to color
in this figure legend, the reader is referred
to the Web version of this article.)
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compressing a Mastcam image might significantly reduce the perceived
quality of the image without affecting the scientific utility of the image.
This might be the case if the observation was not intended for scientific
analysis (but to monitor damage to the rover's wheels, e.g.) or scientific
analysis of the image is not affected by the compression artifacts (since
the scale of the target of analysis is much larger than the scale of
compression artifacts).

The LIVE Image Quality Assessment Database (Sheikh et al.) is
frequently used for training and assessing performance of IQA
models (Wang et al., 2002, Wang and Simoncelli, 2005; Wu et al.,
2013; Soundararajan and Bovik, 2012; Moorthy and Bovik, 2011;
Chaofeng et al., 2011; Saad et al., 2012; Mittal et al., 2012; Tang
et al., 2014; Kang et al., 2014, 2015; Chetouani et al., 2010; Hou
et al., 2015). This database is relatively small (982 images for all
distortions and only 233 for JPEG) so it cannot be used for training
machine learning models like neural networks that require extensive
training data. We performed an experiment to compare image
characteristics of the LIVE (Earth) database with our Mastcam (Mars)
dataset (Fig. 2). We found that the two datasets did not differ sig-
nificantly in the frequency domain (Fig. 2b). However, we found that
histograms of the red, green, and blue color channels differ sig-
nificantly between the two datasets (Fig. 2a). The histograms of pixel
value distributions in each channel of our Mastcam source dataset

(described in Section 3) are Gaussian distributed with clear peaks. In
contrast, the histograms of each channel of the LIVE dataset appear
closer to a uniform distribution, which might be expected for images
of assorted everyday subjects on Earth. The spikes and gaps seen in
the LIVE database histograms are due to compression artifacts in the
images. We do not see these artifacts in the Mastcam histograms
because these images have not been compressed yet.

2.2. Reduced-reference image quality assessment

The automatic labeling approach we propose is most closely related
to reduced-reference image quality assessment (RR-IQA). RR-IQA
measures automatically quantify and predict the perceived quality of a
distorted (e.g., JPEG-compressed) image with partial access to a re-
ference image. Wang and Simoncelli (2005) measures image distortion
using the KL-divergence between the marginal probability distributions
of wavelet coefficients of the reference and distorted images.
Soundararajan and Bovik (2012) proposes an information theoretic
framework that measures the distance between the reference image and
the projection of the distorted image onto the space of natural images.
Wu et al. (2013) proposes a method informed by the human visual
system that separately computes and evaluates the orderly portion of
the image (the primary visual information) and the disorderly portion

Fig. 3. Images A, B, and C show 80 80× -, 160 160× -, and 320 320× -pixel patches of a full-resolution Mastcam image respectively. The 160 160× -pixel patch size best
maximizes the obviousness of artifacts while still allowing some geologic context to be inferred, which is important for labeling the images.

H.R. Kerner et al. Computers and Geosciences 118 (2018) 109–121

112



(the residual uncertainty). We propose a similar approach to Wang
et al., 2005 that uses joint entropy, a measure of uncertainty between
two distributions, and the compression level to estimate the perceived
information lost during compression. To our knowledge, ours is the first
work that uses RR-IQA to automatically label a dataset used for NR-
IQA, thus reducing the requirement for large hand-labeled datasets.

3. Source dataset

The images for our training and test datasets are sourced from the
NASA PDS-released Mastcam database of uncompressed images called
RecoveredProducts that were previously retransmitted losslessly. We
use RGB images collected between sols (Martian days) 121–1087 using
both the M− 100 (medium angle, right “eye”) and M-34 (narrow angle,
left “eye”) imagers for training data and those collected between sols
1537–1672 for test data. Dividing the dataset into train and test sets by
date of acquisition rather than a percentage split better represents how
our model will be used in practice, i.e., predicting the utility of images
collected over time as the rover traverses new geologic regions. The
resulting source dataset contains 6,911 images for training and 1,719
images for testing.

Full-resolution images from this source dataset are sliced into pat-
ches of 160 160× pixels for training. The specific size of 160 160× pixels
was chosen to reveal a large enough region of the full observation to
infer the geologic context, but a small enough region to “zoom in” on
compression artifacts (on the order of 8 8× pixels) and reduce the time
required for training (Fig. 3). Training on patches also enables local
assessment of image quality. This is important because the frequency of
detail can vary significantly across a single image. Using image patches
also significantly increases the size of our training dataset.

For the CNN training and testing data, we use a stride size of 200
pixels which yields 36 patches of size 160 160× pixels in each
1200 1344× -pixel image. The resulting dataset contains 310,680 ex-
amples taken from 8,630 source images. For the automatic labeling
model, we use the same source images but a different stride size (163
pixels) than was used for generating the CNN dataset (Fig. 4). This
ensures that duplicate image patches are only possible when the pro-
duct of the number of slices and the stride size reaches a common
multiple of the two stride sizes. Since the maximum value for this
product in our dataset is well below the least common multiple of 200
and 163 (32,600), we can guarantee that there will be no overlap be-
tween image patches used for training the logistic regression and CNN
model.

4. Automatic labeling of training data

4.1. Perception of scientific image quality

A user of Mastcam data determines whether a downlinked JPEG-
compressed image should be retransmitted losslessly based on both the
scientific context of the image and the perceived level of distortion re-
sulting from compression. A scientist might accept more distortion in an
image where the intent is to understand the context of a study area
(Fig. 5c) or to study low-frequency morphologies like sand dunes or
boulders, the general shapes of which are not severely distorted by small-
scale compression artifacts (Fig. 5d). Distortion can also be more accep-
table in observations likely intended for engineering purposes, for example
to check the general health of the rover's wheels or other subsystems
(Fig. 5e). The level of distortion a scientist is willing to accept can vary in
other images depending on how the compression artifacts affect the sci-
entific interpretation of the image. For example, a scientist might accept
low image quality for an observation where finer details are distorted by
artifacts, but that distortion does not affect the scientific interpretation
(Fig. 5a). In images containing very high-frequency features such as fine
layering (lamination) or bedding in rocks (Fig. 5b), for example where
scientists might wish to analyze properties of the layers such as frequency
and spacing, most scientists require high image quality.

4.2. Proposed approach for automatic labeling

Analyzing tens of thousands of images for training a CNN to label
Mastcam images is prohibitively time consuming for scientists. A
human-labeled dataset would require extensive participation from
multiple domain experts in order to account for varying scientific in-
terests in use of the Mastcam dataset. To reduce the effort required to
label our training dataset, we propose an automatic labeling system that
requires relatively few examples to be labeled and approximates the
varying interests of scientists who use Mastcam data.

To create training data for automatic labeling, we randomly selected
images from the source dataset described in Section 3 and compressed the
selected images using a random JPEG quality between 75 and 95. Based
on inputs from Mastcam experts with a variety of interests, we labeled
images as “accept” if the quality of the image was acceptable given the
context of the observation or “retransmit” if the scientific utility of the
image might be compromised by compression artifacts. Since negative
examples (labeled “retransmit”) are much less common in the dataset than
positive examples, images were manually labeled until 21 negative ex-
amples were identified. These were complemented by 21 positive

Fig. 4. Images used in training the CNN were sliced
from Mastcam images in our base training set with a
stride size of 200 pixels, while images for the logistic
regression automatic labeling model were sliced with
a stride size of 163 pixels. This ensures that even
though the same base Mastcam images might be used
for training both models, the same image slices
(which are the inputs to each model) would not be
used for training both models.
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examples for a total training set size of 42 images. We fit a logistic re-
gression classifier using compression level and joint entropy between the
compressed and uncompressed patch as features to predict the label a
human would apply to an image. Joint entropy is a measure of uncertainty
between two distributions and has been used in image processing to re-
present the difference between a pair of images (e.g., Maes et al., 1997).

We compute the joint entropy between the uncompressed and
compressed versions of an image by first computing a joint histogram of
pixel values between the two images, normalizing this histogram to
yield a joint probability distribution, then computing the entropy of the
joint probabilities (Korn and Korn, 2000):

Fig. 5. A scientist using the Mastcam dataset might have different requirements for image quality depending on the context of the observation. If the objective is to
understand the context of a study area (c) or to study low-frequency morphologies like sand dunes or boulders (d), a higher level of compression might be acceptable.
Distortion can also be more acceptable to scientists in observations likely intended for engineering purposes, for example to check the health of the rover's wheels or
other subsystems (e). There might be some cases where distortion from compression is apparent but it does not affect the scientific interpretation of the image
contents (a). In images containing very high-frequency features such as fine layering (lamination) or bedding in rocks (b), for example where scientists might wish to
analyze properties of the layers such as frequency and spacing, scientists might require high image quality.
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In the next section, we describe how this classifier is used to auto-
matically generate training data on the fly for training a CNN to predict
the perceived quality of Mastcam images without a reference (lossless)
image.

5. Convolutional neural network for predicting scientific utility

When compressed Mastcam images are downlinked from the rover,
the science team must assess the context-dependent quality, which we
term the scientific utility, of the image without a lossless version of the
image to use as a reference. Without this reference image, we cannot
use the automatic labeling system described in Section 3. To predict
which Mastcam images contain distortions that might complicate sci-
entific analysis, we propose a CNN to automatically learn the features
for assessing scientific utility directly from a compressed Mastcam
image.

We create a batch for training by compressing an image from our
source dataset with a random quality between 75 and 95, then gen-
erating 36 patches of 160 160× pixels with a stride size of 200 pixels.
Our CNN utilizes a standard architecture built using Google's Tensor
Flow library for programming neural networks (Abadi et al., 2015). The
input to the network is the 160 160× -pixel image patch, segmented into
red, green, and blue color channels. The network (Fig. 6) contains two
convolutional layers with 5 5× -pixel kernels, each followed by a
2 2× -pixel max pooling layer. The feature maps computed in the con-
volutional layers are input in the next layer to a fully connected layer of
neurons. The neurons in both the convolutional layers and this fully
connected layer utilize the rectified linear unit, or ReLU (Glorot et al.,
2011), to compute non-linear transformations of the data. This is fol-
lowed by a “dropout layer” with keep probability 0.4 to reduce over-
fitting (Srivastava et al., 2014), and finally the “readout” layer, which
computes the log odds of scientific image quality acceptance. We apply

the softmax function to convert these log odds into probabilities. The
network learns to approximate the probability distribution of the la-
beled training data by minimizing the cross entropy between the
modeled probability distribution and the examples seen during
training. For this optimization, we use the cross-entropy with logits loss
function and Adam Optimizer (Kingma and Ba, 2015) provided in the
TensorFlow API. The scientific utility, or probability that a scientist
would find the image quality acceptable given its context, is computed
across the entire image by averaging the probabilities produced by the
model for each of the slices across the image. The local utility estima-
tion in each slice across an entire image is visualized in Fig. 7.

6. Experiments

The proposed system for identifying images that might be requested
lossless when evaluated by a Mastcam science team member is intended
as an assistant rather than a replacement for scientists reviewing these
images. In the current process, each of three team leaders (a principal
investigator (PI) and two Deputy PIs) of the Mastcam imaging system
must review hundreds of images every few months and cast a vote for
each image to be either retransmitted losslessly or deleted from the
Mastcam computer. In the future, a science team member could request
from the proposed software a list of images where the perceived image
quality is estimated to be below a certain percentage, for example 50%,
or request a list of the images sorted by probability of quality accep-
tance. We present an experiment to compare the amount of time an
investigator spends on this process with the current manual system and
the estimated amount of time an investigator might spend on this
process when assisted by our proposed machine learning method. We
also present results from a user study to assess the correlation between
context-dependent image quality assessment by our model and by
Mastcam data users. This study was approved by the ASU Institutional

Fig. 6. The convolutional neural network architecture.
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Review Board (ID STUDY00007622). We compare the performance of
our CNN model for context-dependent image quality assessment to the
state of the art in no-reference image quality assessment. We assessed
the accuracy of our logistic regression classifier for automatic labeling
on test data and compare the performance to other popular classifiers.
Finally, we present an experiment to estimate the uncertainty of our
model's predictions.

6.1. Accuracy of automatic labeling model

The test dataset for our logistic regression classifier is a set of 42
images selected randomly from the source dataset and manually labeled
as “accept” or “retransmit”. We did not balance the test set by class as
we did for the training set. In Fig. 8, we plot feature values of the test
dataset and the decision boundary determined by the parameters
learned during training. Our logistic regression classifier achieves
83.3% accuracy on test data. We trained several popular classifiers and
compare their performance on test data in Table 1. The highest accu-
racy is achieved by logistic regression and random forest, but we chose
to use logistic regression because it is mathematically straightforward
and more readily understood across disciplines. All test examples that
were incorrectly classified were false negatives, meaning the classifier
labeled some examples as “retransmit” that were accepted but did not
label any examples as “accept” that were retransmitted. For scientists to
adopt our method of identifying images that might need to be re-
transmitted, it is important for our automatic labeling classifier to have
a low rate of false positives, or examples automatically classified as
“accept” that should actually be retransmitted.

6.2. Correlation of model predictions with perceived image quality

To evaluate our CNN model's predictions for scientific image
quality, we conducted a user study of Mastcam data users. Eleven users
were shown the same set of 30 (160 160× -pixel) image patches from
compressed Mastcam images containing geologically diverse content in
addition to the full-resolution image the patch came from. Each user
was asked to rate on a linear scale from one to five the suitability of
each image for the indicated intended analysis given their perception of
the quality of the image. Scores below three were interpreted as

Fig. 7. Using 160 160× -pixel slices of a larger image as input to the CNN allows local perceived quality estimation to be performed. The image on the left shows a test
image sliced into 160 160× -pixel fragments with a stride size of 160 pixels. The heatmap on the right shows the distribution of acceptance probabilities across the
entire image. These individual probabilities are averaged to estimate the probability that a user would find the image quality of an image acceptable or not (thus
choosing to retransmit that image lossslessly or not).

Fig. 8. Our logistic regression classifier uses compression level and joint en-
tropy between a compressed and uncompressed version of an image to predict
the label a human would assign to the image. This classifier achieves 83.33%
accuracy on test data.

Table 1
Comparison of popular classifiers for automatic labeling model.

Classifier Accuracy on Test Set

Logistic Regression 83.33%
Random Forest 83.33%
Neural Network 80.95%
Naive Bayes 80.95%
Support Vector Machine 76.19%
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Fig. 9. Model and combined participant estimates of the probability that a user would accept the quality of each image given its scientific context (right y-axis)
superimposed on participant responses from user study for each image (left y-axis).

Fig. 10. Images from user study where model recommendation and combined user recommendation disagreed.

H.R. Kerner et al. Computers and Geosciences 118 (2018) 109–121

117



recommendations to retransmit the image, scores above three as re-
commendations to accept the image, and scores equal to three as not
sure. We computed the combined user recommendation as the sum of
the “accept” responses and half of the “not sure” responses divided by
the total number of participants for each image. Aggregate responses
from participants and our CNN model estimates for each image are
shown in Fig. 9.

There is significant variation in the responses from participants,
even among those who study the same geologic processes and Mastcam
image products. In general, our CNN's assessments of image quality
given geologic context agree with the assessments made by participants
in this user study. In all except four examples (Fig. 10), the model's
prediction and the combined user prediction fall on the same side of the
50% decision boundary. While there is of course some error in the
model, we also consider that some error might be due to differing in-
terpretations of the questions or indicated intended analysis in the user
study. For example, it is possible for a participant to have included
factors of the image independent of compression artifacts (e.g., framing)
in their assessment of the suitability of an image for the intended
analysis.

6.3. Comparison of manual and assisted methods

To estimate the amount of time an investigator spends reviewing
images using the existing manual process, we observed a Mastcam
Deputy PI conduct the review process for sols 1537–1672, which in-
cludes observations for 124 sols consisting of 1,719 compressed RGB
images (not every sol has a downlink). The images are reviewed by sol,
which might contain anywhere between a few to dozens of images
depending on the observation plan for that sol. From this study, we
estimated a lower bound of approximately one minute per sol that the
investigator spends reviewing the images to mark them for deletion or
lossless retransmission. Thus, for a typical review period of about 150
sols, an investigator can expect to spend at least two and a half hours
reviewing images with the existing manual process. The results from
this study were typical of previous image assessment activities con-
ducted by this Deputy PI over the five year history of the MSL mission's
Mastcam investigation.

Since we cannot truly measure the amount of time an investigator
would spend in the image review process using the proposed method
without modification to the existing internal mission operations soft-
ware, we estimated this time by assuming the investigator would spend
the usual time reviewing images down-selected by our model but
negligible time reviewing those above the acceptability threshold set by
the investigator. We ran our model on all images downlinked between
sols 1537–1672 with quality acceptance threshold varying between
50% and 5%. We plotted these thresholds and the number of images our

model classifies below that threshold in Fig. 11a. This plot shows that
there is an approximately exponential increase in the number of images
needing review as the acceptance threshold increases. We computed the
expected time required to review images when assisted by our proposed
method as a fraction of the time that would be spent reviewing all 1719
images, and plotted this as a function of the acceptance probability
threshold in Fig. 11b. Using a 50% threshold, the investigator would
need to review about one third of the images when assisted by the
proposed method than without. We estimate that an investigator would
spend a maximum of ∼36 minutes to review images in the studied sol
range, compared to a lower bound of ∼124 minutes when unassisted.

6.4. Performance compared to related work

As discussed in Section 2, the approach proposed in Kang et al.
(2014) for no-reference image quality assessment using a CNN is most
similar to our approach for context-dependent image quality assess-
ment. We trained our model and the implementation from Kang et al.
(2014) on JPEG-compressed Mastcam images obtained between sols
121–1087 and evaluated their performance on the same source dataset
used in training but using different stride values (following the proce-
dure in Kang et al. (2014)). We use the Linear Correlation Coefficient
(LCC) and Spearman Rank Order Correlation Coefficient (SROCC)
measures to evaluate model performance. Table 2 shows there is a good
correlation between predictions by our model and labeled test data and
that our model outperforms the Kang et al. (2014) model on context-
dependent image quality assessment. We note that Kang et al. (2014)
proposed a solution to the general no-reference image quality assess-
ment problem, not context-dependent image quality assessment as we
are proposing in this work. Despite this, we perform this comparison to
the state of the art for completeness.

There are key differences between Kang et al. (2014) and our ap-
proach that explain the difference in performance for context-depen-
dent image quality assessment. The LIVE dataset for JPEG distortions is
derived from 29 high-resolution RBG color images compressed with
varying JPEG quality to produce a dataset of 233 images. LIVE provides
a Difference Mean Opinion Score (DMOS) for each image. Scores range

(a) (b)

Fig. 11. In the practical implementation of our proposed method, a science team member could request to review only a list of images with perceived image quality
acceptance probability below some percentage, for example 50%, or request a list of the images sorted by probability of quality acceptance. The number of images
below the selected threshold that the scientist might need to review is shown in the plot on the left. On the right, we plot the estimated time that might be spent
reviewing the images (computed as a fraction of the time spent reviewing 1719 images) as a function of the selected threshold.

Table 2
Comparison of our model proposed for context-dependent image quality
assessment and model proposed by Kang et al. (2014) for general no-
reference image quality assessment.

Model LCC SROCC

Kang et al. (2014) 0.101895 0.196932
Our CNN 0.546739 0.630751
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from 1 to 100 and are based on responses from observers about their
perception of the quality of each image (Sheikh et al.). Kang et al.
(2014) uses the LIVE images and DMOS scores for training and testing.
We modified the code provided by Kang et al. (2014) to use Mastcam
images from sols 121–1087 and the perceived image quality predictions
generated by our logistic regression labeler (also in the range 1–100).

Additionally, Kang et al. (2014) pre-processes images by generating
32 32× -pixel patches from the image and applying a local contrast
normalization, which might discard information that is potentially
useful for inferring contextual information about the image.

An important assumption in Kang et al. (2014) is that the distortion
in LIVE images is roughly homogeneous across the entire image, and

Fig. 12. Model outputs and Gaussian fit parameters from model uncertainty evaluation experiment based on Gal and Ghahramani (2016) for three input image
examples.
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thus the DMOS score for the entire image is used as the score for all
patches in that image. While this may be a valid assumption for general
purpose image quality assessment, it is not a valid assumption for
context-dependent image quality assessment. As illustrated in Fig. 7,
the perceived scientific quality of an image patch is highly dependent
on the geologic features in that image. Using the same label for scien-
tific image quality for all patches in a Mastcam image would make it
difficult to learn a mapping between the pixels of an image patch and
scientific image quality in the entire image.

6.5. Evaluation of model uncertainty

Gal and Ghahramani (2016) presented a method based on dropout
(Srivastava et al., 2014) for estimating the predictive uncertainty of a
neural network. Gal and Ghahramani show that an arbitrarily deep,
non-linear neural network with dropout applied before every weight
layer is mathematically equivalent to an approximation of the prob-
abilistic deep Gaussian Process. They also show that by performing
many stochastic forward passes through a trained neural network by
enabling dropout at test time, one can derive mathematically grounded
uncertainty estimates.

We performed an experiment using this method to evaluate our
CNN's confidence when assessing context-dependent quality in different
types of images (Fig. 12). We found that our model's predictive un-
certainty is lowest for high-frequency images most prone to visible
distortion (e.g., Fig. 12b) and very low-frequency images least prone to
visible distortion (e.g., Fig. 12a). In images like Fig. 12a where color is
uniform or there is not significant detail throughout the patch, com-
pression artifacts are difficult to notice and a scientist might perceive
the quality to be good even though the image is significantly com-
pressed. Conversely, in high-detail images such as Fig. 12b, compres-
sion artifacts are most noticeable and a scientist might perceive the
quality of the image to be poor even though minimal compression was
applied to the image. These observations are consistent with the low
uncertainty of the model in these image categories. The predictive
uncertainty of our model is highest for mixed-frequency images (e.g.,
Fig. 12c) where distortion might be moderate depending on the context
of the observation. In Fig. 12c, a large part of the image is sand where a
scientist might not notice compression artifacts but the image does
contain some fine detail areas where artifacts are visible. Depending on
if these areas were the focus of the original image, the scientist re-
viewing the image may or may not classify the quality of the image as
acceptable. In Fig. 12c, our model predicts that a scientist reviewing
this image would classify the quality as not acceptable, but with sig-
nificant uncertainty. These are cases where scientists are most uncertain
when making decisions about the quality of a scientific image. This
human uncertainty is consistent with our model uncertainty.

7. Discussion

In general, previous works proposed general solutions to the no-
reference image quality assessment problem that are tested on bench-
mark image quality datasets and do not take into account the user's
understanding of the image content. We propose a solution for context-
dependent image quality assessment to estimate the perceived quality
of JPEG-compressed images that also depends on the scientific context
of features in the image. This work also differs from previous work in
that we do not perform any pre-processing on images other than slicing
full-resolution images into 160 160× -pixel image patches for local as-
sessment. Common datasets for developing no-reference image quality
assessment models are typically small, artificially distorted, and/or la-
beled through crowd-sourcing platforms. For our model and applica-
tion, we need a large dataset with domain-specific labels that cannot be
obtained through crowd-sourcing platforms. To solve this problem, we
also propose an automatic labeling system based on joint entropy that
takes a small number of examples labeled by a domain expert and fits a

model that is used to label thousands more examples.
Rather than measuring an objective image quality score, our

method estimates the scientific utility as perceived by a scientist using
the data. In this work, the level of distortion as well as the scientific
context of the image observation determine whether an image should
be retransmitted losslessly or not. Our method is designed specifically
for the generally well-understood distortions caused by JPEG com-
pression and is trained end-to-end with the Mastcam image dataset. The
greatest challenge in developing a context-dependent image quality
assessment method is the subjectivity of the science quality inter-
pretations of users. To improve the results presented here, future work
could explore incorporating the scientific intent explicitly in the
training examples and CNN predictions (rather than implicitly as in this
work) or training an ensemble of models that individually model the
different scientific interests of users. User-specific models could then be
used when planning Mastcam observations to select the appropriate
JPEG compression quality for the user that requested the observation.

8. Conclusions

In this paper, we introduce a new process called context-dependent
image quality assessment in which the context and intent behind the
image observation define the acceptable image quality threshold. We
proposed a two-part machine learning solution to estimate the image
quality of compressed Mastcam images given the context of the ob-
servation as perceived by a scientist. This differs from previous work on
image quality analysis because quality is not an objective measure of
feature distortion in an image, but rather a context-specific measure of
scientific utility that represents the likelihood that artifacts introduced
during compression will complicate the scientific analysis of the image.

First, a logistic regression model based on joint entropy between a
compressed and uncompressed version of an image was trained using a
small set of data to predict the label (accept or retransmit) a scientist
might apply to an image if both the compressed and uncompressed
image were available. This method enabled us to label a large enough
dataset to train a CNN without requiring domain experts to label tens of
thousands of images.

Second, we use this labeled data to train a CNN to estimate the
scientific utility of a compressed image, or the probability that a sci-
entist using Mastcam data would accept the quality of a compressed
image given the observation's context. We demonstrated with a user
study that the proposed CNN's predictions correlate with perceptions of
context-dependent image quality by scientists. When assisted by our
proposed method, we conclude that a Mastcam scientist could spend
significantly less time reviewing a subset of images prioritized by our
machine learning method than with the existing manual method that
requires the investigator to review all of the images.
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